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The paper considers the problem of the elastic equilibrium of a trans-
versely isotropic cylinder under the action of forces distributed over
its lateral surface according to an integer polynomial in the distance
from the end of the cylinder, the forces being independent of the polar
angle 0. A number of authors have studied various variants of the prob-
lem of the stress distribution im an isotropic cylinder under the action
of polynomial loading (Almansi’s problem); the method of solution for
the axisymmetric case and the appropriate references are indicated in
Chapter 7 of {1 1. The present paper gives a general method of solution
based on the application of the theory of axisymmetric deformation and
torsion similar to the method suggested by Lur’'e for the solution of the
problem of an elastic layer; it enables the conditions on the cylindrical
surfaces to be satisfied exactly, and on the ends approximately, "on the
average".

1. General expressions for stresses and displacements. Let
us consider an elastic body in the form of a hollow circular cylinder of
finite length possessing transverse isotropy, i.e. at every point in the
cylinder there is a plane for which all directions are elastically equi-
valent; we shall assume that this plane is normal to the axis of the
cylinder. We shall refer the body to a system of cylindrical co-ordi-
nates r, 0, z, with axes as shown in the diagram.

Let us suppose that the cylinder is subjected to pressures p, ¢, t
and p’, q¢°, t’, which act on the external and internal surfaces,
respectively (in radial, axial and tangential directions), and which are
independent of the polar angle 6.
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1644 S.G. Lekhnitskii

We shall assume that the material follows the generalized Hooke's law,
and that the induced strains are small. Using the conventional notations

for stresses and strains, we write the equations of the generalized
Hooke’s law as follows [2]:

- { v 1
&= F( &—v)—f 0  1,=qg T
£y = 1 A% 1
8= 5 (—vo,+0) — =0z Yo, = =5 Toz 1.1)
E B, 0z G
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Here, E, E, are the Young’s moduli for tension-compression in the
plane of isotropy and in a direction normal to this plane; v, vy, v,,
are Poisson’s ratios; G, G, are the shear moduli for the plane of iso-
tropy and for radial planes, so that

. Fo)
T2+

Ev, = Ev,, G (1.2)

We introduce the following notations: a, b denote the internal and
external radii and I the length of the cylinder

H=Evi+Gi(l —v — 2vivz)

o G (1 —vyvy) _n Ewr
oA == 2G——T1‘L » B *Gl—fT
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y =261 (A (1.3)
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Here D? is the Laplace operator for a function dependent on r only.
p pe

In all cases when the stresses and displacements are independent of
6 they can be expressed in terms of two functions F(r, z) and ¢(r, 2);
1.€.

oF 2 #F
urz'—-—_-——araz , ugzwb-(-:i y w:n{Dsz{»Gw (1.4)
1 aF o F i) F
Gy = (2G — o D?F + B*g;g“) ) Trz = 5= (OCD‘AF B, FY%) )
2 g a2
oy = (2(: o — aDF 48 73;2—) , Te=Gip (1.5)

oF
Oz = 5= (“1D2F + B '5;{> , Tre= GD%g
The functions F and ¢ satisfy the equations
o2 a2 a
(35 +s22D?) (s +s2D)F =0, (5 + D=0  (L6)

The first function F defines the axisymmetric deformation, the second
defines the torsion. Evidently, s, is always a real number, and it is
shown in [2] that s, and s, cannot be purely imaginary. The function F
differs from that g1ven in 62 1 by a constant multiplier. Hu Hai-chang
has shown in [3 ] that in the general case of the deformation of a trans-
versely isotropic body the stresses and displacements can be expressed
in terms of two functions F and ¢ which satisfy Equations (1.6), where
9% a2

In the future we shall assume that s, # s,; the solutions when the
values of s are equal can be found by a limiting process.

In order to derive solutions to the problems set we shall need to
make use of the expressions

F= X Fi(r) 2, @*——E @, (1) 2* (1.8)

k=0

From the requirement that (1.8) must satisfy Equations (1.6), we
obtain recurrence differential equations relating F) and ¢, respectively
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with different suffixes. We can express the final result in a compact
form by introducing the operators used by Lur’e [1 ]:

. . $82% o,
sin szD 3! + =5 Dt —

cosszl)m1~—~-—32—z!—D2.f-34‘7;l Dt — . (1.9)

A
D

We then obtain

=2+ ¢0s 8,20 - F“l (1.10

F = sinsz0. ==

¢ = €0s sozD - @y -+ sin sozD . %

(where, for convenience, operators and functions are separated by dots).

Here F,,, F,,. F,;, Fy;, &y, ¢, are unknown functions of the variable
r; they must be determined in such a way that all conditions on the
cylindrical surfaces are satisfied. Substituting these results in (1.4)
and (1.5), we obtain the following expressions for the displacements and

stresses:

3 .
Uy = = [sﬂ——cosslzD Fiy+sins;zD - ig) R

: . F
-+ 8, ( —¢0s 82D Fog - sins,zD. sg;; )1

w=2D* [({ — 8s,%) (sm s,2D . 21 4 cog s zD Fu )+
i Foo F
+ (1 — 5322) (sln s,z - - _|_ cos 8,20 - :2_;%2)"

’

2 .
Up = ‘a_r_(cos 562D - @y -+ sin 5,20 - %i) (1.11)

o, = S;PG e e {3.912)1)2] (cos §,z2D - Fiy — sin s,zD - —‘;—“-) +
» Fa )

1 4
r ar
-+ s [ZG —i~ —5— — (ot - Bs,?) D“’*-I (1005 8,20 - Foy — sin s,zD- o

=2 [31 {0y — B18:) (COS 82D - Fyg —sin 8,2D - 51‘.3.> -

, F
+ 83 (o, — B1%:?) (cos 35D - Fyy — sin saD) - 22 )}

rrzZ—(%—D2[(oc+Bs1)(51ns, 2D >+
+ (o 4 Bs,?) (sm s,2D . 20 + ¢0s 5,2D - Sflz)lz ﬂ

Toy = 8,0y air (— sin $yzD - Dy + cos s,2D .cpl)
Tro = GD 2 (coS 5,20 @, +sin 5,20 - 1) (1.12)
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) Thg expression for o, can be obtained from o _ by replacing d/rdr by
a¢/or.

2. Axisymmetric deformation. Suppose that on the cylindrical
surfaces we are given pressures p and g, which have rotational symmetry
and which vary according to a law of integer polynomials in z, t being
zero. It will be sufficient to consider the case when each of the pres-
sures is proportional to zk, where k is an arbitrary integer; we can
find solutions for loads given in the form of polynomials by means of
superposition.

We shall comsider first the case when the normal pressure is pro-
portional to an even power of z, and when the tangential pressure is pro-
portional to an odd power. The boundary conditions are

z z

2m om—1
Or = Py, (7-) v T =G, (T) , Tp=20 at r=b 2.1)
TR B 2m--1
Or = p2'm <_l—> ! Trz = q2m—1 <'[i> ) Trg == 0 at r=a

In Formulas (1.11) and (1.12) we must set ¢, = ¢, = F;, = Fy; = 0;
then ug =745 =71 5= 0. The expressions for ¢ and r ., in expanded form
are as follows:

Or = 26%':—, (5:F 10 4 82F29) — D? [sy (a0 + Bsy2) Fyp + 55 (@ + Bss?) Faol —

— 2 {2(; L L D (s,9F 0+ 2F20) — D* [58 (o + Bs,?) Fig +
48,3 ( 2\ F : k2 1 4 pok 2k+1 ok}
2% (o + Bs,?) 20]}+---‘1'(—1) W{za T‘g,.‘D (8,251 + 52HT1F ) —
— D¥F2 52641 (o - Bsi?) F1o 1 82511 (o0 + Bsy?) onl} + ... (2.2)

Ty = Zj;‘i,‘ D? [y (a + Bs,®) Fip + 55 (@ 4 Bsy?) Fyp] —

o %%D‘i [s:% (@ -+ Bse®) Fyo + 85 (& + Bso®) Faol 1. ..

r
z2k—1 d

e O T gy g DT [ (@ 4 Bsy®) Frot 8% (B8, Fag ] 4.

From conditions (2.1) the last powers of z in (2.2) will be 2m and
2m — 1. We must therefore set

D™ F 10 = Agmte, D" HF, 20 = Comte (2.3)

(where A, C are arbitrary constants). Whence, taking into account the
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structure of the operator D?, we find successively by integration

. 4
D™F,, = 2%“ 72+ By 1n r -+ Aogm

9mM—9 Am m
DR = (2222,“ r 4 z r2(lnr—1) + 2’“ 74 By olnr+ Ay s

D2m—2k A2m+2 2k+2 _+_ B

(21 (k + 1)1)2 (2’%!)2

T R e )PP oy
(2’% )2 (2571 (k—1)1]2 (k—1)!

A B,

* [2k—1 (2km:21)!]2 S m?"” r’(lnr—1) + (@4

k1
0= rek (ln role ) +

k!

Apn
+—2m—42kﬂ7’2+B2m——2k1n"+Azm—2k (k=0,1,2,...,m)

Here A;, B; are arbitrary constants, b2k+ ! are Stirling’s numbers

[4]
bt = k1(1 + %++%) (2.5)

For k= m — 1 we obtain D2F1°, and for k = m, D°F10 = F10' The ex-
pressions for the operators on the function F,, have, of course, the
same structure as (2.4), except that A;, B, are replaced by different
constants which we shall denote by C; and D,.

Setting r = b and r = @ in Formulas (2.2), and equating coefficients
of z2® and z2®~ ! to the given quantities (see (2.1)), we obtain the
equations for the coefficients

(G — a0 — Bs?) 7 T Agmis + (G — o0 — B8?) 82" T 1Comys +
+ 28 (01 By 4 5 Dg,) = (— )™ (2m)1 Do

[2m

(G — o —Bs;?) 8,2 Agnys + (G — o — B8y%) 2 F10om o -

28 (5,21 B - 5 Dy) = (— )" (2m) 1 220 (2.6)

l2m

[(d T"‘ BS]_Q) Sl2m_1Agm+2 + ((7. + BSQZ) 322m—102m+2] _2— + [(1 ”ll_ 3312) 312771—1B2m _‘I"
b
+ (@ -+ Bs?) 5= D] = (— 1) (2m — 1)1 2L

l2m-1

[(ot + Bs12) 12T Apn s + (o + BSo?) 87" WCamyps] az_z + [ + Bs:?) > By +

-+ (CX —+ 6322) 322'm—1D2m] =(— 1)7”_1 (2m — 1)1 99m—1%

12711—1
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Setting r = b and r = ¢ and equating to zero the coefficients of
2**=2 in the expression for o, and those of z2*~ % in the expression
for T g We obtain four equations which contain the constants 4,., C,,,
By, _ 9Dy, _, in addition to those already found. Proceeding in this way
from higher to lower powers of z, we eventually arrive at a term in the
expression for o _ which is independent of z, and in this way we obtain a
set of two equations for two linear combinations of coefficients

(G — o —Bsy?) 814, + (G — a — Bs;?) 8,0, 518, + 8D, (2.7)
from which the coefficients can be determined uniquely.

As a result we can determine u_, o , 04, 7 accurately, but an arbi-
trary constant (which we can take as A, or C, or any linear combination
of these constants) will occur in the expressions for » and o . The
arbitrary constant can be found by equating the vector sum of the forces
on one end of the cylinder to the given value, in particular to zero; it
is not difficult to show that the forces on the other end of the cylinder
then balance the given external loading. The end section z = 0 remains
plane,

If the normal pressure is proportional to an odd power of z and the
tangential pressure is proportional to an even number, then we have the
conditions

- z \2m-+1 z \2m
Oy = p2m+1 <T> ’ Tre = Qo (T) y To=10 at r=1» (2.8)
z
T

, 2m—+-1 L/ oz \2m
Oy = P2m+1< ) Trz == Qo (T) ’ T0=0 at r=2a

This problem can be solved in a completely analogous way. We equate
to zero the functiens ¢, ¢,, F,,, F,, and we obtain the same expres-

sions (2.4) for D**~2kF  p2r=2kp

In this case all the coefficients except 4;, C, can be found from the
boundary conditions (2.8), and the expressions for the stresses contain
no arbitrary constants. On the end z = 0 the stress o, is zero, and on
the other end z = 1 it balances the external pressure gq.

It is not difficult to show, by making use of Expressions (1.3), that
when s, and s, are not equal the determinants of all the sets of equa-
tions are nonzero.

For a solid cylinder (a = 0) the above formulas can be simplified
considerably, since all terms in (2.4) containing logarithms must be
discarded, since they lead to singularity at r = 0.

Example. A hollow cylinder subjected to a normal pressure distributed



1650 S.G. Lekhnitskii

over its external surface sccording to a parabolic law (see Figure).

We have: == 1

p:——n.g(»j—i), g=p'=¢"=0, Qo= Q1= Fry=Foy =0
DAF g == Ay, DAF o = Cy
D"*Fm-:_%j—%r“‘v}—Bgfnr—LAg, DngO::%r‘3+Dzlnr+Cg (2.9
Flo«- r4—{— rz(lnr—l) —1-zr‘3+Bolnr+ Ao

onzézr4+zr2(lnr—1)+f?'2+1)olnf'+co

After finding the constants from the boundary conditions, we finally
obtain the following expressions for the stresses and displacements:
ngb? ; a? vy 1—w . ath?
‘Sr:—m{ﬁ(‘*ﬁ)ﬂ"m[*z*(b“f‘“ — e )+
B lnb—a’lna a??lnb/a i——l )]}

PO — g
- nab? . 1—wvy ) w{l )
"B—""(bz_az)lz{z <1+ )+1——V1Vz[ (b2+a2 3r2 4 )r‘
+(1+v)a2(b lnbl;:zzm“«ir Z‘_"Zz/“l }nr—aﬂ} (2.10)
e E , ,
= e F Ty [ — 97 (L Vet 2t ) @t (Inr —
’Inb—a?
"”‘lnT_hZ—’lP‘f>+ C(1—vyvy) ]
T,,=0
b2 {—w ;
Uy, = — E‘—(bfz——ﬁ—)f“{ {(1—\:);-»{—(14—\9)——}—%—1 — [{i—v)(bz+a2}r—

b”lnb-—a-lna

— o 0 S| 4 Y gy BIREZ IR Ly

2h2 in b i .
E‘g}‘f—z{aéﬁ (1—V}rlnr-—r]} (2.t
. szz 2V2 2 ; " ] } U, = 0
w”mz{ Z+Z (1“""'\’)7’ +2(1+’\)G lnr—}—C], [} .
The arbitrary constant C is found from the conditions on the ends; if
there is no externally applied pressure here, we obtain
C=— 054+ a?) (x: 1””") (2. 12)
1-V1V2

For a solid cylinder we find from (2.10) and (2.11) that
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(2. 13)

}.Vl Mrl ng El

5, =— [ +———(b2—r2)] = [2+—(b2_3r2)] = R20r+0)

3. Torsion. Suppose that on the surfaces r = b, r = a of a hollow
cylinder only the pressures t are applied (see Figure) which are inde-
pendent of 0 and which are distributed according to a polynomial law.
One end will be assumed to be free from load and the other will be
assumed to be fixed.

Here again it is sufficient to consider the case of a load pro-
portional to some power of z. Let us suppose that this is an even number.
We have the boundary conditions

z \2m

o, = 1, = 0, Trp t2m< l) at r=9% (3.1)
’ 2m

0, =71, =0, T =l (T) at r=a

In Formulas (1.11) and (1.12) we must set
Fip=Fpp=Fyy =Fp =¢, =0, O = 0y =0, = T,= 0

The expressions for the displacements u, and the stresses r , in ex-
panded form can be written as follows:

d 2,2 2k
wo= g (@ — T Doyt ) DY, ] (32)

e = GD2 [cpo WL Dot (— 1) T D ] (3.3)

If we discard powers of z higher than 2m in the expression for r g,
we obtain the following equation for ¢;:

D2D¥ g — () 3.4
Whence o (3-4)

A
om+2
D¥m+ G = ——ZTZ—H 24 Appto

A
gy =gmt et a Bty Ay, (3.5)
A A
Dk 2m-+4 2k+4 2m+2 2k+2
T T egp @ T
b2k+l) Azm
+ g (= ) e
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B .
g Dametits o g gy 4 Dot 2 4 Bty A

A2m+4 F2k42 + A2m+2 2k +
22k F2L) (k21 2 (ke — )1 (k + 1)
B k+1 A
2m 2%--2 [ 1 2k —1 by } 2m 2k—2
r nr — e
+ o (k— 2)1 k! tHE=D T R T e G—2) +

2B2m—-2k
Skt etk (3.6)

DDy =

4+ B2mgzk+4 2 (]nr . _2_) + Azm—82k+4 rt 4 Bom—sk-to

(k=0,1,2 ..., m)
If we now satisfy the conditions (3.1) we obtain the equations

L, t
(Dl2D2mq)0),»:b = —l—;f% (D12Dmcpo)r=a . _zm (3.7)

l2m

D12D2m_2(p0 =0, D2 ¢, =0, o Di%gy =0 atr=bandr=q¢

From these equations we determine successively the constants 4, ,,
B, A2!1_2, Byp_gi +es A6' B,; A4, B,. Th? coefficient 40 does not
appear in the formulas, and A, appears only in the expression for the
displacement; we determine A, from the requirement that some circle r=A
in the plane of the fixed end (for example, the external or internal con-
tour of the section) is not displaced. On the free end r4, = 0; on the
fixed end this stress balances the external pressure.

If the stress t is proportional to an odd power of z the problem can
be solved in a completely analogous way. In Formulas (1.11) and (1.12)
we must equate to zero all functions except ¢;. In the expression for
7, there will appear an arbitrary constant which must be found from the
requlrement that the torque on the free end is zero.

Ezample. A hollow cylinder subjected to torques applied over the ex-
ternal surface according to a parabolic law.

We have n =1

z \2
t = tz(’g), =0, @1 =0

DDA, = 0O
A 2B,
DDy = 2 — 20 (3.8)

Ay By, 2B,
r
2 rs

Having determined the four constants from Equations (3.7), we can
find the expressions for the stresses
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b2 4 ¢ 452 (3% b2
T, (Ef—zT‘)lg‘ {zz (rz_%) +€.§.(_..J__.[(b4 4 g% -+ 4ad) r® 4 a%? (30 — 5%

b‘a + a‘z) r2
— @+ a) (4 30} 3.9)
g 4 Gy at 2 b a%? + 4at
w=gaE st (Pt )]

As we might have expected, this result coincides with that obtained
by another method [ 5 1.
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